Plasmon resonance in multilayer graphene nanoribbons
نویسندگان
چکیده
منابع مشابه
Plasmon bands in multilayer graphene
High-energy collective electronic excitations (plasmons) in freestanding multilayer graphene are studied by momentum-resolved electron energy-loss spectroscopy (EELS). For normal incidence, only the high-energy plasmon band is excited and we measure a blueshift of the π -plasmon dispersion with increasing thickness. The observed transition between two-dimensional and three-dimensional behavior ...
متن کاملDissipative plasmon-solitons in multilayer graphene
O R IG IN A L P A P ER Abstract Nonlinear properties of a multi-layer stack of graphene sheets are studied. It is predicted that such a structure may support dissipative plasmon-solitons generated and supported by an external laser radiation. Novel nonlinear equations describing spatial dynamics of the nonlinear plasmons driven by a plane wave in the Otto configuration are derived and the exist...
متن کاملPlasmon electron-hole resonance in epitaxial graphene.
The quasiparticle dynamics of the sheet plasmons in epitaxially grown graphene layers on SiC(0001) has been studied systematically as a function of temperature, intrinsic defects, influence of multilayers and carrier density using electron energy loss spectroscopy with high energy and momentum resolution. The opening of an inter-band decay channel appears as an anomalous kink in the plasmon dis...
متن کاملGraphene Oxide Based Surface Plasmon Resonance Biosensors
Graphene oxide (GO), an amorphous insulatormaterial, has consists of a hexagonal ring based carbon network having both sp2-hybridized carbon atoms and sp3-hybridizedcarbons bearing hydroxyl andepoxide functional groups on either side of the sheet, whereas the sheet edges are mostly decorated by carboxyl and carbonyl groups [1-6]. These unique properties hold great promise for potential applicat...
متن کاملKohn anomalies in graphene nanoribbons
The quantum corrections to the energies of the point optical phonon modes Kohn anomalies in graphene nanoribbons NRs are investigated. We show theoretically that the longitudinal optical LO modes undergo a Kohn anomaly effect, while the transverse optical TO modes do not. In relation to Raman spectroscopy, we show that the longitudinal optical modes are not Raman active near the zigzag edge, wh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Laser & Photonics Reviews
سال: 2015
ISSN: 1863-8880
DOI: 10.1002/lpor.201500058